COMPUTATION OF VALUE FOR CERTAIN DIPFERENTLAL GAMES

PMM Vol. 41, №4, 1977, pp. 588-595
E, G, POLISHCHUK
(Sverdlovsk)
(Received January 31, 1977)

Two types of nonlinear differential games with fixed instant of ending are considered. Formulas are derived for value functions under particular conditions.

1. Let us consider a system of two controllable objects defined by the equations

$$
\begin{align*}
& \dot{x}=A(t) x+u, \quad x \in R^{n}, \quad u(t) \in P(t) \tag{1.1}\\
& y^{\cdot}=g(t, y, v), \quad y \in R^{m}, \quad v(t) \in Q \quad \text { where } \tag{1.2}
\end{align*}
$$

x and y are phase vectors of the objects; $A(t)$ is an n-dimensional matrix continuously dependent on t; the control vectors μ, and v are bounded by the compacta $P(t)$ and Q, with the pointwise-multiple mapping of $P(t)$ bounded and measurable. The continuous function $R(x, y)$ defines the payoff. The player who controls object x strives to minimize the quantity $R(x(\theta), y(\theta))$ which represents the payoff in the phase vector system at instant $t=\theta$ of the game end, while the player controlling object y strives to maximize the payoff.

It is assumed that the conditions which ensure the existence and uniqueness of solution of Eq. (1.2) up to $t=\theta$ for any initial conditions and any measurable function $v(t) \in$ Q are satisfied. These conditions are: function $g(t, y, v)$ must be continuous over the totality of its arguments and must satisfy the local Lipschitz condition for y uniformly with respect to v. It is assumed that $\|g(t, y, v)\| \leqslant x(1+\|y\|)$ and $x=$ const.

We denote the phase vector and the space of the system by $z=(x, y)$ and $R^{k}=R^{n} \times$ R^{m}, and use the concepts of the theory of differential games formulated in book [1].

According to [1] a value function $\varepsilon(t, z)$ exists for the game considered here. We shall seek its form for the position $\left(t_{0}, z_{0}\right)$, assuming that the payoff $R(z)$ can be represented in the form

$$
\begin{equation*}
R(z)=\max _{s \in S} R_{s}(z), \quad R_{s}(z)=R_{s}^{1}(x)+R_{s}^{2}(y) \tag{1.3}
\end{equation*}
$$

where S is a compactum and function $R_{s}(z)$ is continuous with respect to (s, z). We denote by $\varepsilon_{s}{ }^{1}\left(t_{*}, x_{*}\right)$ the "value" of the following problem of optimal control:

$$
x^{*}=A(t) x+u, \quad x\left(t_{*}\right)=x_{*}, \quad u(t) \in P(t) ; \quad R_{s}^{1}(x(\theta)) \rightarrow \inf
$$

Similarly, the quantity $e_{s}{ }^{2}\left(t_{*}, y_{*}\right)$ relates to the problem

$$
\begin{aligned}
& y^{*}=g(t, y, v), \quad y\left(t_{*}\right)=y_{*}, \quad v(t) \in Q \\
& R_{s}{ }^{2}(y(\theta)) \rightarrow \sup
\end{aligned}
$$

Let us consider function

$$
\begin{equation*}
\varepsilon^{*}(t, z)=\max _{s \in S}\left\{\varepsilon_{s}^{1}(t, x)+\varepsilon_{8}^{2}(t, y)\right\} \tag{1.4}
\end{equation*}
$$

which is continuous and has a maximum because function $\varepsilon_{s}(t, z)=\varepsilon_{s}{ }^{1}(t, x)+$ $\varepsilon_{s}{ }^{2}(t, y)$ is continuously dependent on (s, t, z).

Let us define the sufficient conditions for the equality $\varepsilon^{*}\left(t_{0}, z_{0}\right)=\varepsilon\left(t_{0}, z_{0}\right)$ to be satisfied. We introduce for any c the closed sets

$$
\begin{aligned}
& W_{c}(t)=\left\{z \in R^{k}: \varepsilon(t, z) \leqslant c\right\} \\
& W_{c}^{*}(t)=\left\{z \in R^{k}: \varepsilon^{*}(t, z) \leqslant c\right\} \\
& W_{c}^{s}(t)=\left\{z \in R^{k}: \varepsilon_{s}(t, z) \leqslant c\right\}
\end{aligned}
$$

and use symbol ∂ for denoting the boundary of the set in R^{k}.
Condition 1.1. Let $\varepsilon^{*}\left(t_{0}, z_{0}\right)=c_{0}$. Then

$$
W_{c_{0}}^{*}(t) \neq \varnothing, \quad \forall t \in\left[t_{0}, \theta\right]
$$

If condition 1.1 is satisfied, there exists a collection of closed convex sets $B(t) \subset$ R^{k} which depend on $t \in\left[t_{0}, \theta\right]$ and such that:

1) $z_{0} \in B\left(t_{0}\right)$;
2) set $B\left(t_{2}\right)$ contains for any $t_{0} \leqslant t_{1}<t_{2} \leqslant \theta$ all phase positions that can be reached at instant t_{2} from position $\left(t_{1}, z_{1}\right)$, where $z_{1} \in B\left(t_{1}\right)$, and
3) $W_{c_{0}}{ }^{*}(t) \cap B(t) \neq \varnothing, \quad \forall t \in\left[t_{0}, \theta\right]$.

Let there exist an open convex set $B \subset R^{k}$, which contains set $B(t)$ with pro~ perties defined above, and such that the following conditions are satisfied.

Condition 1.2. Function $\varepsilon_{s}(t, z)$ must be convex over set B relative to z for any $s \in S$ and $t \in\left[t_{0}, \theta\right]$. Note that this condition implies the convexity of sets $W_{c}{ }^{*}(t) \cap B$.

Condition 1.3. If the number $\beta>0$ is such that for every $c \in\left(c_{0}, c_{0}+\right.$ β) there exists a set J_{c} which is dense in $\left[t_{0}, \theta\right]$ and has the following properties. The part of the boundary of set $W_{c}{ }^{*}(t)$ in B is smooth for any $t \in J_{c}$, i. e. it is possible to draw from every point in $\partial W_{c}^{*}(l) \cap B$ a unique supporting hyperplane to $W_{c}{ }^{*}(t) \bigcap B$.

Theorem 1. If conditions 1.1-1.3 are satisfied, $\varepsilon^{*}\left(t_{0}, z_{0}\right)-\varepsilon\left(t_{0}, z_{0}\right)$.
Proof. We denote by $T\left[t_{1}, t_{2}\right]\{M\}$ the set of program absorption [1], i. e. the set of all points $z_{1} \in R^{k}$, such that the first player is able to bring the system from position (t_{1}, z_{1}) to position $\left(t_{2}, z_{2}\right)$ for any arbitrary $t_{1}<t_{2}$ from $\left[t_{0}, \theta\right]$ and the set $M \subset R^{k}$, if he knows the programed control of the second player in the interval $\left[t_{1}, t_{2}\right]$. At the position $\left(t_{2}, z_{2}\right), z_{2} \in M$.

Evidently $\varepsilon^{*}\left(t_{0}, z_{0}\right) \leqslant \otimes\left(t_{0}, z_{0}\right)$, hence for proving the theorem it is sufficient to show that the inclusion

$$
\begin{equation*}
z_{0} \in W_{c}\left(t_{0}\right) \tag{1.5}
\end{equation*}
$$

is valid for any $c \in\left(c_{0}, c_{0}+\beta\right)$. Let us prove (1.5) for some fixed c, noting that property 3) of set $B(t)$ implies that $W_{c}^{*}(t) \cap B(t) \neq \varnothing$ for all $t \in\left[t_{0}, \theta\right]$.

Suppose that the following statement has been already proved. Inclusion

$$
\begin{equation*}
T\left[\tau_{1}, \tau_{2}\right]\left\{W_{c}^{*}\left(\tau_{2}\right) \cap B\left(\tau_{2}\right)\right\} \supset W_{c}^{*}\left(\tau_{1}\right) \cap B\left(\tau_{1}\right) \tag{1.6}
\end{equation*}
$$

is valid for any τ_{1} and τ_{2} such that $\tau_{2} \in J_{c}$ and $t_{0} \leqslant \tau_{1}<\tau_{2}$. The validity of (1.5) follows from this statement.

Let us consider the subdivision of segment $\left\{t_{0}, \theta\right]$ by points $t_{0}<t_{1}<\cdots<t_{N}$ $<\theta$ such that $t_{i} \in J_{c}$ when $1 \leqslant i \leqslant N$. Then from (1.6) we have

$$
\begin{equation*}
T\left[t_{0}, t_{1}\right] \ldots T\left[t_{N-1}, t_{N}\right]\left\{W_{c^{*}}\left(t_{N}\right) \cap B\left(t_{N}\right)\right\} \supset W_{s}^{*}\left(t_{0}\right) \cap B\left(t_{0}\right) \tag{1.7}
\end{equation*}
$$

By reducing the size of subdivisions of segment $\left[t_{0}, t_{N}\right]$ by points from J_{c} and using the differential game lattice $[1,2]$, from (1.7) we obtain

$$
\begin{equation*}
S\left[t_{0}, t_{N}\right]\left\{W_{c}^{*}\left(t_{N}\right) \cap B\left(t_{N}\right)\right\} \supset W_{c}^{*}\left(t_{0}\right) \cap B\left(t_{0}\right) \tag{1.8}
\end{equation*}
$$

where $S[a, b]\{M\}$ denotes the set of points $z \in R^{k}$ such that position (a, z) is the point of local absorption of set $M \subset R^{k}$ at instant $t=b$ [1].

Since function $\varepsilon^{*}(t, z)$ is continuous with respect to (t, z), the set $W_{c}^{*}(t)$ is upper semicontinuous with respect to t. Since owing to property 2) set $B(t)$ is upper semicontinuous on the left, hence set $W_{c}^{*}(t) \cap B(t)$ is also upper semicontinuous on the left. From this and the theorem on alternative [1] we can deduct that set $S\left[t_{0}, t\right]$ $\left\{W_{c}{ }^{*}(t) \cap B(t)\right\}$ is also upper semicontinuous on the left with respect to t. Hence from (1.8) taking into account that $W_{c}{ }^{*}(\theta)=W_{c}(\theta)$ and $W_{c}\left(t_{0}\right)=S\left[t_{0}, \theta\right]\left\{W_{c}(\theta)\right\}$ we obtain

$$
\begin{align*}
& W_{c}^{*}\left(t_{0}\right) \cap B\left(t_{0}\right) \subset S\left[t_{0}, \theta\right]\left\{W_{c}^{*}(\theta) \cap B(\theta)\right] \subset \tag{1.9}\\
& S\left[t_{0}, \theta\right]\left\{W_{c}^{*}(\theta)\right\}=W_{c}\left(t_{0}\right)
\end{align*}
$$

Since $z_{0} \in W_{c}{ }^{*}\left(t_{0}\right) \cap B\left(t_{0}\right)$, from (1.9) follows (1.5).
It remains to verify the statement (1.6). For this it is sufficient to prove the equality

$$
\begin{equation*}
T\{E\}=\bigcap_{s \in S} T\left\{E_{s}\right\} \tag{1,10}
\end{equation*}
$$

where $T=T\left[\tau_{1}, \tau_{2}\right], \tau_{1}$ and τ_{2} are fixed and satisfy the assumptions of statement (1.6), and $E=W_{c}^{*}\left(\tau_{2}\right) \cap B\left(\tau_{2}\right)$ and $\left.E_{s}=W_{c}^{s}\left(\tau_{2}\right) \cap B\left(\tau_{2}\right)\right)$.

Since function $\varepsilon_{s}(t, z)$ represents the game value and, also, the program maximin for system (1.1), (1.2) and for the payoff $R_{s}(z)$ [1], hence

$$
T\left\{W_{c}^{8}\left(\tau_{2}\right)\right\}=W_{c}^{s}\left(\tau_{1}\right), \quad \forall s \in S
$$

and owing to property 2) of set $B(t)$ we have

$$
\begin{equation*}
T\left\{E_{8}\right\} \supset W_{c}^{s}\left(\tau_{1}\right) \cap B\left(\tau_{1}\right) \tag{1,11}
\end{equation*}
$$

Using (1.10) and (1.11) we obtain (1.6) in the form

$$
T\{E\}=\bigcap_{s \in S} T\left\{E_{s}\right\} \supset \bigcap_{s \in S} W_{c}^{s}\left(\tau_{1}\right) \cap B\left(\tau_{1}\right)=W_{c}^{*}\left(\tau_{1}\right) \cap B\left(\tau_{1}\right)
$$

First, let us consider the case when E is a compactum. We represent E as the intersection of supporting half-planes

$$
E=\bigcap_{l \in \partial D} O_{l}, \quad O_{l}=\left\{z \in R^{k}:\langle l, z\rangle \leqslant \max _{q \in E}\langle l, q\rangle\right\}
$$

where D is the unit sphere in R^{k}. We shall prove that for any $l_{*} \in \partial D$ there exists an element $s_{*} \in S$ such that

$$
\begin{equation*}
O_{l_{*}} \supset E_{s_{*}} \tag{1.12}
\end{equation*}
$$

Let $z_{*} \in \partial E$ be a point such that the hyperplane $\Pi\left(l_{*}\right)=\left\{z \in R^{*}:\left\langle l_{*}, z\right\rangle\right.$ $\left.=\left\langle l_{*}, z_{*}\right\rangle\right\}$ represents the support of E. Since $z_{*} \in \partial W_{c}^{*}\left(\tau_{2}\right) \cup \partial B\left(\tau_{2}\right)$, three cases are possible.
$1^{\circ} . z_{*} \in \partial B\left(\tau_{2}\right)$ and $z_{*} \not \ddagger \partial W_{c}^{*}\left(\tau_{2}\right)$, when (1.12) is evidently satisfied for any $s_{*} \in S$.
$2^{\circ} . z_{*} \not \equiv \partial B\left(\tau_{2}\right)$ and $z_{*} \in \partial W_{c}^{*}\left(\tau_{2}\right)$. Since $\varepsilon^{*}\left(\tau_{2}, z_{*}\right)=c$, there exists an element $s_{*} \in S$ such that $\varepsilon_{s_{*}}\left(\tau_{2}, z_{*}\right)=c$. We shall prove that $z_{*} \in \partial W_{c}{ }^{s_{*}}$ $\left(\tau_{2}\right)$. If $z_{*} \in$ int $W_{c}{ }^{s_{*}}\left(\tau_{2}\right)$, then, owing to the convexity of function $\varepsilon_{\varepsilon_{*}}\left(\tau_{2}, z\right)$ with respect to $z \in B$, we would have $c=\min \left\{\varepsilon_{s_{-}}\left(\tau_{2}, z\right): z \in B\left(\tau_{2}\right)\right\}$. However, since $t_{0}<\tau_{2}$, then $c \leqslant \inf \left\{\varepsilon_{s_{*}}\left(t_{0}, z\right): z \in B\left(t_{0}\right)\right\}$ and, consequently, $c \leqslant \inf$ $\left\{\varepsilon^{*}\left(t_{0}, z\right): z \in B\left(t_{0}\right)\right\}$, which contradicts the inequality $c>c_{0}=\varepsilon^{*}\left(t_{0}, z_{0}\right)$. Hence $z_{*} \in \partial W_{c}^{s_{*}}\left(\tau_{2}\right)$. Since $z_{*} \notin \partial B\left(\tau_{2}\right)$, the hyperplane $\Pi\left(l_{*}\right)$ is a supporting one and because of condition 1.3 it is, also, the unique support for $W_{c}{ }^{*}\left(\tau_{2}\right) \cap$ B that passes through point z_{*}. Since $W_{c}{ }^{*}\left(\tau_{2}\right) \subset W_{c}{ }^{{ }^{*}}\left(\tau_{2}\right)$, any hyperplane that passes through point z_{*} and is a supporting one for set $W_{c}{ }^{*} *\left(\tau_{2}\right) \cap B$, is also supporting for $W_{c}{ }^{*}\left(\tau_{2}\right) \cap B$. These two observations imply that the hyperplane $\Pi\left(l_{*}\right)$ is a supporting one for $W_{e}{ }^{s} \cdot\left(\tau_{2}\right) \cap B$ and, consequently, also for $E_{s_{*}}$.Hence (1.12) is also valid in case 2°.
$3^{\circ} \cdot z_{*} \in \partial W_{c}^{*}\left(\tau_{2}\right) \cap \partial B\left(\tau_{2}\right)$. We assume that the hyperplane $\Pi\left(l_{*}\right)$ is not a supporting plane for $W_{c}{ }^{*}\left(\tau_{2}\right) \cap B$, as otherwise the previous reasoning could be applied. As in case 2°, we assume that $s_{*} \in S$. If II $\left(l_{*}\right)$ is not a supporting hyperplane for set $W_{c}^{s_{*}}\left(\tau_{2}\right) \cap B\left(\tau_{2}\right)$, points $z_{1} \in W_{c}^{3_{*}}\left(\tau_{2}\right) \cap B\left(\tau_{2}\right)$ and $z_{2} \in W_{c}^{s^{*}}\left(\tau_{2}\right)$ $\cap\left(B \backslash B\left(\tau_{2}\right)\right)$ would be found lying outside the half-space $O_{l_{*}}$. The existence of such points z_{1}, z_{2}, and z_{*} contradicts the convexity of set $E_{s_{*}}$.

Thus the statement (1.12) is valid in all three cases, and implies that

$$
\begin{equation*}
\bigcap_{l \in \partial D} T\left\{O_{l}\right\} \supset \bigcap_{s \in S} T\left\{E_{s}\right\} \tag{1.13}
\end{equation*}
$$

But by Neumann's minimax theorem we have for systern (1.1), (1.2)

$$
\begin{equation*}
T\left\{\bigcap_{l \in \partial D} O_{l}\right\}=\bigcap_{l \in \partial D} T\left\{O_{l}\right\} \tag{1.14}
\end{equation*}
$$

From (1.13) and (1.14) we obtain $T\{E\}_{s \in S} T\left\{E_{s}\right\}$. The inverse inclusion is obvious. Hence (1.10) is proved in the case when E is a compactum,

When set E is unbounded, the proof is reduced to the previous one by the following procedure.

To prove (1.10) it is sufficient to show that

$$
r D \cap T\{E\}=\bigcap_{s \in S}\left[r D \cap T\left\{E_{s}\right\}\right], \quad V^{r}>0
$$

We set $r=r_{0}$. A reasonably large number r_{1} can then be found such that when sets E° and E_{s}° satisfy the relationship

$$
r_{1} D \cap E=r_{1} D \cap E^{\circ}, \quad r_{1} D \cap E_{s}=r_{1} D \cap E_{s}^{\circ}, \quad \forall s \in S
$$

then

$$
\begin{aligned}
& r_{0} D \cap T\{E\}=r_{0} D \cap T\left\{E^{\circ}\right\}, \quad r_{0} D \cap T\left\{E_{s}\right\}= \\
& r_{0} D \cap T\left\{E_{s}^{\circ}\right\}, \quad \forall s \in S
\end{aligned}
$$

We set $E^{\circ}=E \cap r_{1} D$ and $E_{s}^{\circ}=E_{s} \cap r_{1} D$. Since E° is a compacturn, hence, as previously shown, we have

$$
T\left\{E^{\circ}\right\}=\bigcap_{s \in S} T\left\{E_{s}^{\circ}\right\}
$$

This proves (1.10) and completes the proof of the theorem.
Note. If Eq. (1.2) is linear and the payoff $R(z)$ is the Euclidean distance to the convex compactum in R^{k}, then mapping (1.3) contains linear $R_{8}{ }^{1}(x)$ and $R_{8}{ }^{2}(y)$, and function $\varepsilon^{*}(t, z)$ coincides with the programed maximin. Condition (1.2) is satisfied for $B=R^{k}$.

Condition 1.3 is satisfied in the case of a regular problem [1]. It should be noted that when the dependence of $P(t)$ on t is continuous, the differentiability of function $\varepsilon^{*}(t, z)$ not only with respect to z but, also, to t follows from the condition of regularity. This implies that $\varepsilon^{*}=\varepsilon$, which means that condition (1.1) is also satisfied. If, however, the dependence of $P(t)$ on t is measurable but discontinuous, condition 1.1 may not be satisfied, and has to be postulated.

Example. Let us consider the modification of the problem in [3]. Let system (1.1), (1.2) be presented in the form

$$
\begin{aligned}
& x_{1}^{*}=x_{2}, \quad x_{2}^{*}=u_{1}, \quad x_{3}^{*}=x_{4}, \quad x_{4}^{*}=u_{2} ; \quad u(t) \in P(t) \\
& y_{1}^{*}=y_{2}, \quad y_{2}{ }^{\circ}=\lambda y_{2}{ }^{2}+v_{1}, \quad y_{3}^{*}=y_{4}, \quad y_{4}=v_{2} ; \quad v(t) \in Q \\
& Q=\left\{v=\left(v_{1}, v_{2}\right):\|v\| \leqslant v\right\}, \quad P(t)=\left\{u=\left(u_{1}, u_{2}\right):\|u\| \leqslant \mu(t)\right\}
\end{aligned}
$$

where $\mu(t)$ is a measurable bounded positive function, and the number $\lambda>0$ is a small parameter.

Let

$$
R(x, y)=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{3}-x_{3}\right)^{2}}+a_{1}\left(y_{1}-x_{1}\right)+a_{3}\left(y_{3}-x_{3}\right) .
$$

where a_{1} and a_{3} are numbers. The game is considered in the time interval [0, 日]. The payoff $R(x, y)$ can be represented in the form (1.3), i. e.

$$
\begin{aligned}
& R(x, y)=\max _{s \in S}\left\{\left(s_{1} y_{1}+s_{3} y_{3}\right)-\left(s_{1} x_{1}+s_{3} x_{3}\right)\right\} \\
& S=\left\{s=\left(s_{1}, s_{3}\right): \quad\left(s_{1}-a_{1}\right)^{2}+\left(s_{3}-a_{3}\right)^{2} \leqslant 1\right\}
\end{aligned}
$$

We assume that $a_{1}>1$ and $\mu(t)-v \geqslant \alpha>0$ for all t. It was shown in [3] that

$$
\begin{aligned}
& \varepsilon_{s}(t, x, y ; \lambda)=-k(t)\|s\|+s_{1}\left(\left(y_{1}-x_{1}\right)+(\theta-t)\left(y_{2}-x_{2}\right)\right)+ \\
& s_{3}\left(\left(y_{3}-x_{3}\right)+(\theta-t)\left(y_{4}-x_{4}\right)\right)+{ }^{1 / 6} \lambda_{1}(\theta-t)^{2}\left\{3 y_{2}{ }^{2}+\right. \\
& 2 v y_{2}\left(s_{1} /\|s\|-s_{3}^{2} /\|s\|^{2}\right)(\theta-t)-v^{2}(\theta-t)^{2} s_{1}\left({ }^{5 / 2} s_{1} /\|s\|^{2}+\right. \\
& \left.\left.s_{3}^{2} /\|.\|^{2} \|^{3}\right)\right\}+\lambda^{2}(\theta-t)^{2} f\left(t, \lambda, s, y_{2}\right) \\
& k(t)=\int_{i}^{\theta}(\theta--\tau)(\mu(\tau)-v) d \tau
\end{aligned}
$$

Note that function $f\left(t, \lambda, s, y_{2}\right)$ is positive homogeneous with respect to s, and that its second derivatives with respect to $s \in S$ and the second derivative with respect
to y_{2} continuously depend on t, λ, s, and y_{2} in the region of their variation.
Let us take compactum Γ in space (t, x, y) and show that when λ_{*} is fairly small we have $\varepsilon^{*}\left(t_{0}, x_{0}, y_{0} ; \lambda_{0}\right)=\varepsilon\left(t_{0}, x_{0}, y_{0} ; \lambda_{0}\right)$ for any $\lambda_{0} \leqslant \lambda_{*}$ and $\left(t_{0}, x_{0}, y_{0}\right) \in \Gamma$.

Since circle S does not contain 0 , it is possible to find a sphere $B_{*} \subset R^{k}$ of radius r_{*} with its center at zero, such that for any $\lambda_{0} \leqslant 1$ and $\left(t_{0}, x_{0}, y_{0}\right) \in \Gamma$ there exists set $B_{\left(\lambda_{n}, t_{0}, x_{0}, v_{n}\right)}(t)$ with properties 1)-3) and is contained in B_{*}. The subscript at $B(t)$ indicates that the set is chosen for the initial position (t_{0}, x_{0}, y_{0}) and parameter $\lambda=\lambda_{0}$).

We shall show that there exists a $\lambda_{*} \leqslant 1$ such that function $\varepsilon_{s}(t, x, y ; \lambda)$ is convex relative to (x, y) and concave relative to s, when $t \in[0, \theta],(x, y) \in B_{*}, s \in S$ and $\lambda \leqslant \lambda_{*}$.

Since for every $s=\left(s_{1}, s_{3}\right) \in S s_{1} \geqslant \delta>0$ (δ is some number), function ${ }^{1 / 2} \lambda s_{1} y_{2}{ }^{2}$
$-+\lambda^{2} f\left(t, \lambda, s, y_{2}\right)$ is convex relative to y_{2} in the set $\left|y_{2}\right| \leqslant r_{*}$ for all $t \in[0, \theta]$ and $s \in S$, if $\lambda \leqslant \lambda_{1}$ (λ_{1} is fairly small). This implies convexity of function $\varepsilon_{\mathrm{s}}(t, x, y ; \lambda)$ relative to $(x, y) \in B_{*}$.

Since $k(t) \geqslant 1 / 2 \alpha(\theta-t)^{2}$, hence function $\varepsilon_{s}(t, x, y ; \lambda)$ is concave relative to $s \in S$ when $\lambda \leqslant \lambda_{2}$ (λ_{2} is fairly small). We set $\lambda_{*}=\min \left(\lambda_{1}, \lambda_{2}\right)$.

We take arbitrary $\lambda_{0} \leqslant \lambda_{*}$ and $\left(t_{0}, x_{0}, y_{0}\right) \in \Gamma$, and shall check if conditions 1.2 and 1.3 are satisfied. For set B we take the sphere B_{*}. Condition 1.2 is then satisfied. We set $\varepsilon^{*}\left(t_{0}, x_{0}, y_{0} ; \lambda_{0}\right)=c_{0}$, select $\beta>0$ so that $0 \notin\left(c_{0}, c_{0}+\beta\right)$, and assume that $c \in\left(c_{0}, c_{0}+\beta\right)$. We then check if the part of the boundary of set $W_{c}^{*}(t), 10-$ cated in B_{*}, is smooth for any $t \in\left[t_{0}, \theta\right]$. For this it is sufficient to show that for any $t \in\left[t_{0}, \theta\right],(x, y) \in B_{*}$ for which $\varepsilon^{*}\left(t, x, y ; \lambda_{0}\right)=c$ the maximum in the equality $\varepsilon^{*}\left(t, x, y, \lambda_{0}\right)=\max \left\{\varepsilon_{s}\left(t, x, y ; \lambda_{0}\right): s \in S\right\} \quad$ is reached on a unique s. This follows from the condition $\varepsilon^{*}\left(t, x, y ; \lambda_{0}\right)=c \neq 0$ of positive homogeneity and concavity of function $\varepsilon_{s}\left(t, x, y ; \lambda_{0}\right)$ relative to $s \in S$. This proves that conditions 1.1-1.3 are satisfied for the considered here λ_{0} and $\left(t_{0}, x_{0}, y_{0}\right)$. Hence Theorem 1 is valid.

Note that when function $\mu(t)$ is continuous, the equality $\varepsilon^{*}\left(t_{0}, x_{0}, y_{0} ; \lambda_{0}\right)=\varepsilon\left(t_{0}, x_{0}\right.$, $y_{0} ; \lambda_{0}$) may be solved more simply by the method used in [3].
2. Let us consider the differential game ending at instant $t=\theta$. The motion of the system is specified by the linear equation

$$
\begin{equation*}
x^{\cdot}=u+v, \quad x \in R^{n}, \quad u(t) \models P(t), \quad v(t) \in Q(t) \tag{2.1}
\end{equation*}
$$

where x is the system phase vector and the dependence of compacta $P(t)$ and $Q(t)$ in R^{n} on t is measurable and bounded. Let the continuous payoff function $\Gamma(x)$ be of the form

$$
\begin{align*}
& \Gamma(x)=\min _{s \in S} \max _{l \in L} \gamma(x ; s, l) \tag{2.2}\\
& \gamma(x ; s, l)=\langle a(s, l), x\rangle+b(s, l)
\end{align*}
$$

where S and L are convex compacta, function $\gamma(x ; s, l)$ is convex relative to. $s \in$ S, concave relative to $l \in L$, and affine relative to $x ; a(s, l)$ is a continuous function with values in R^{n}, and the scalar function $b(s, l)$ is lower semicontinuous with respect to s and upper semicontinuous with respect to l.

Representation (2.2) is admissible in the following cases:
a) $\Gamma(x)=\min \left\{\Lambda_{1}(x), \ldots, \Lambda_{k}(x), \varphi(x)\right\}$ where $\Lambda_{i}(x)$ are linear functions and $\varphi(x)$ is a convex function such that dom φ^{*} is a compactum (see [4]), and
b) $\Gamma(x)=\varphi_{1}(x)-\varphi_{2}(x)$, where the convex functions $\varphi_{i}(x)$ are such that the sets $\operatorname{dom}{\varphi_{i}}^{*}$ are compacta.

We introduce the notation

$$
\begin{gathered}
x(t, x ; s, l)=\langle a(s, l), x\rangle+\int_{i} \min _{u \in P(\tau)}\langle a(s, l), u\rangle d \tau+ \\
\int_{i}^{\theta} \max _{v \in Q(\tau)}\langle a(s, l), v\rangle d \tau+b(s, l) \\
\varepsilon_{00}(t, x)=\max _{l \in L} \min _{s \in S} x(t, x ; s, l), \varepsilon^{\infty}(t, x)=\min _{s \in S} \max _{l \in L} x(t, x ; s, l)
\end{gathered}
$$

and denote the value function by $\mathrm{E}(t, x)$.
We assume that the following condition is satisfied.
Condition 2.1. Function $x(t, x ; s, l)$ must be convex relative to s and concave relative to l in the set $S \times L$ for any position (t, x).

Theorem 2. If condition 2.1 is satisfied, then for all positions

$$
\varepsilon_{0 n}(t, x)=\varepsilon(t, x)=\varepsilon^{\infty}(t, x)
$$

Proof. First, we would point out that according to one extension of Neumann's theorem on minimax [5] equality (2.2) may be represented in the form

$$
\begin{equation*}
\Gamma(x)=\max _{l \in L} \min _{s \in S} \gamma(x ; s, l) \tag{2.3}
\end{equation*}
$$

Let us prove the validity of inequality

$$
\begin{equation*}
\varepsilon_{00}(t, x) \leqslant \varepsilon(l, x) \tag{2.4}
\end{equation*}
$$

For every $l \in L$ we introduce the continuous function of x

$$
\gamma_{l}(x)=\min _{s \in S} \gamma(x ; s, l)
$$

Let $\varepsilon\left(t, x \mid \gamma_{l}(\cdot)\right)$ be the value function of the game which corresponds to system (2.1) and to payoff function $\gamma_{l}(x(\theta))$. We shall prove that

$$
\begin{equation*}
\varepsilon\left(t, x \mid \gamma_{l}(\cdot)\right)=\min _{s \in S} x(t, x ; s, l) \tag{2.5}
\end{equation*}
$$

We apply the method used in [2], and denote by $\varepsilon^{\circ}\left(t_{1}, x_{*} \mid t_{2}, \varphi(\cdot)\right)$ the program minimax in the game defined by system (2.1) with payoff $\varphi\left(x\left(t_{2}\right)\right)$ for position $\left(t_{1}, x_{*}\right)$ and any arbitrary instant of time $t_{1}<t_{2} \leqslant \theta$ and function $\varphi(x)$. The minimax is determined by formula

$$
\varepsilon^{o}\left(t_{1}, x_{*} \mid t_{2}, \varphi(\cdot)\right)=\inf _{u(\cdot) \in U} \sup _{v(\cdot) \in V} \varphi\left(x\left[t_{2} ; t_{1}, x_{*}, u, v\right]\right)
$$

where U is the set of programed controls of the first player in $\left[t_{1}, t_{2}\right]$, i. e. of meam surable functions $u(\cdot)$ which satisfy almost everywhere in $\left[t_{1}, t_{2}\right.$] the constraint $u(t)$ $\in P(t)$. The definition of set V is similar. We denote by $x\left[t_{2} ; t_{1}, x_{*}, u, v\right]$ the system phase point at instant t_{2} with initial position (t_{1}, x_{*}) and the selected controls $u(\cdot)$ and $v(\cdot)$.

It can be verified that

$$
\begin{equation*}
\varepsilon^{\circ}\left(t, x \mid \theta, \gamma_{l}(\cdot)\right)=\min _{s \in S} x(t, x ; s, l) \tag{2.6}
\end{equation*}
$$

Let us show that for any $t_{1}<t_{2}<\theta$ and $x_{*} \in R^{n}$

$$
\begin{equation*}
\varepsilon^{\circ}\left(\dot{t}_{1}, x_{*} \mid t_{2}, \varepsilon^{\circ}\left(t_{2}, \cdot \mid \theta, \gamma_{l}(\cdot)\right)\right)=\varepsilon^{\circ}\left(t_{1}, x_{*} \mid \theta, \gamma_{l}(\cdot)\right) \tag{2.7}
\end{equation*}
$$

In fact, using (2.6) with allowance for the convexity of function $x(t, x ; s, l)$ relative to s, we obtain

$$
\begin{aligned}
& \varepsilon^{\circ}\left(t_{1}, x_{*} \mid t_{2}, \varepsilon^{o}\left(t_{2}, \mid \theta, \gamma_{l}(\cdot)\right)\right)=\inf _{u(\cdot) \in U} \sup _{v(\cdot) \in V \in \operatorname{s\in S}} \min _{s \in S} x\left(t_{2}, x\left[t_{2} ; t_{1},\right.\right. \\
& \left.\left.\quad x_{*}, u, v\right] ; s, l\right)=\inf _{s \in S} \inf _{u(\cdot) \in U} \sup _{v(\cdot) \in V} x\left(t_{2}, x\left[t_{2} ; t_{1}, x_{*}, u, v\right] ; s, l\right)= \\
& \quad \min _{s \in S} x\left(t_{1}, x_{*} ; s, l\right)=\varepsilon^{\circ}\left(t_{1}, x_{*} \mid \theta, \gamma_{l}(\cdot)\right)
\end{aligned}
$$

Equality (2.7) is proved. It implies that in virtue of the differential games lattice $[1,2] \varepsilon\left(t, x \mid \gamma_{l}(\cdot)\right)=\varepsilon^{\circ}\left(t, x \mid \theta, \gamma_{l}(\cdot)\right)$ and, consequently, (2.5) follows from (2.6).

From (2.3) for any $l \equiv L$ we obtain $\gamma_{l}(\cdot) \leqslant \Gamma(\cdot)$, hence $\varepsilon\left(t, x \mid \gamma_{l}(\cdot)\right) \leqslant$ $\varepsilon(t, x \mid \Gamma(\cdot))$. From this and equality (2.5) we obtain (2.4). Using the program maximin and equality (2.2) with allowance for the convexity of function $x(t, x ; s, l)$ relative to l, we similarly obtain

$$
\begin{equation*}
\varepsilon(t, x) \leqslant \varepsilon^{\infty}(t, x) \tag{2.8}
\end{equation*}
$$

By the already mentioned theorem about the minimax we have $\varepsilon_{00}(t, x)=e^{\infty}$ (t, x), hence (2.4) and (2.8) confirm the theorem.

Example . Let system (2.1) be defined by

$$
\begin{aligned}
& x_{1}^{*}=u_{1}+v_{1}, \quad u(t) \in P(t)=\left\{u=\left(u_{1}, u_{2}\right):\|u\| \leqslant 2(1-t)\right\} \\
& x_{2}^{*}=u_{2}+v_{2}, \quad v(t) \in Q-\left\{v=\left(v_{1}, v_{2}\right):\|v\| \leqslant 1\right\}
\end{aligned}
$$

The game is played in the time interval $[0,1]$. The payoff is defined by $\Gamma(x)=$ $\min \{\langle c, x\rangle, \varphi(x)\}$, where c is a nonzero vector in R^{2}, and the convex function $\varphi(x)$ is determined by its conjugate [4]

$$
\varphi^{*}(l)= \begin{cases}\|l\|^{2}, & l \in L \\ +\infty, & l \neq L\end{cases}
$$

where L is a circle of unit radius in R^{2} whose center is at point d. We assume that L does not intersect the half-line directed toward vector - c.

Let us represent function $\Gamma(x)$ in the form (2.2)

$$
\begin{aligned}
\Gamma(x) & =\min _{s \in S} \max _{l \in L}\left\{\left\langle s_{1} c+s_{2} l, x\right\rangle-s_{2}\|l\|^{2}\right\} \\
S & =\left\{s=\left(s_{1}, s_{2}\right): \quad s_{1}+s_{2}=1 ; \quad s_{1}, s_{2} \geqslant 0\right\}
\end{aligned}
$$

i. e. in this example we have $a(s, l)=s_{1} c+s_{2} l$ и $b(s, l)=-s_{2}\|l\|^{2}$.

For any $t \in[0,1]$ and $r \in R^{2}$

$$
\int_{i}^{1} \min _{u \in P(\tau)}\langle r, u\rangle d \tau+\int_{i}^{1} \max _{v \in Q}\langle r, v\rangle d \tau=k(t)\|r\|
$$

where $k(t)$ is a nonnegative function. Hence

$$
x(t, x ; s, l)=\left\langle s_{1} c+s_{2} l, x\right\rangle+k(t)\left\|s_{1} c+s_{2} l\right\|-s_{2}\|l\|^{2}
$$

Function $x(t, x ; s, l)$ is convex relative to $s \in S$ for any $l \in L$. If the norm of vector d is fairly large, $x(t, x ; s, l)$ is concave relative to $l \in L$. Hence condition 2.1 is satisfied.

The author thanks N.N. Krasovskii and V.S. Patsko for discussing this work and for their valuable advice.

REFERENCES

1. Krasovskii, N. N. and Subbotin, A.I., Positional Differential Games. Moscow, "Nauka", 1974.
2. Pshenichnyi, B. N., The lattice of differential games. Dokl. Akad. Nauk SSSR, Vol. 184, №2, 1969.
3. Al'brekht, E, G. , On the convergence of quasi-linear objects. PMM, Vol. 34, №4, 1970.
4. Rockafellar, R. T., Convex Analysis. N. Y. Princeton Univ. Press, 1970.
5. Infinite Antagonistic Games. Moscow, Fizmatgiz, 1963.
