
COMPUTATION OF 

PMM 

UDC 62-50 

VALUE FOR CERTAIN DIPFERWMAL GAMES 

Vol.41, W4, 1977, pp. 588-595 
E, G, POLISHCHUK 

(Sverdlovsk) 

(Received January 31, 1977) 

Two types of nonlinear differential games with fixed 
considered. Formulas are derived for value functions 
ditions. 

instant of ending are 
under particular COR- 

1. Let us consider a system of two controllable objects defined by the equations 

2’ = A (t) 2 + u, x E R”, u (t> E P (t) ( 1.1) 

Y’ = g (t, Y, 4, Y E am, v (4 E Q where (I. 2) 

z and y are phase vectors of the objects; A (t) is an n-dimensional matrix continuously 
dependent on t; the control vectors &and v are bounded by the compacta P (t) and 

Q, with the pointwise-multiple mapping of P (t) bounded and measurable. The conti- 

nuous function R (2, J/) defines the payoff. The player who controls object x strives 
to minimize the quantity R (X (e), g ~~)) w ic h’ h p re resents the payoff in the phase vec- 
tor system at instant t = 8 of the game end, while the player controlling object 9 

strives to maximize the payoff. 

It is assumed that the conditions which ensure the existence and uniqueness of solution 
of Eq. (1.2) up to Z = 8 for any initial conditions and any measurable function v (t) EZ 

Q are satisfied. These conditions are: function g (t, y, v) must be continuous over the 
totality of its arguments and must satisfy the local Lipschitz condition for 9 uniformly 

with respect to v . It is assumed that 11 g (t, y, v) I[ < x (I + 11 y n) andx = const. 
We denote the phase vector and the space of the system by z =(x, y) and. Rk=Rn X 

R': and use the concepts of the theory ofdifferential games formulated in book [l]. 
According to [l] a value function e (t, 2) exists for the game considered here. We 

shall seek its form for the position (t,,, zo) , assuming that the payoff R (2) can be repre- 
sented in the form 

R (z) = 72; R, (4, R, (4 = R,’ C-4 + h2 (~1 (1.3) 

where8 is a compacturn and function R, (z) is continuous with respect to (s, z). We 

denote by Bsl (t,, Z*) the “value” of the following problem of optimal control: 

i = A (t) x + u, x (tJ = x*, u (t) E P (t); R,l (x (0)) + inf 

Similarly, the quantity eJa (t*, y,) relates to the problem 

y- = g (t, y, ~1, Y &+J = Y,, v (t) E: Q 

Rs2 (Y (@I --t SUP 
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Let us consider function 

f?* (6 2) = y:z (Es1 (6 2) + Es” tt, Y)) (1.4) 

which is continuous and has a maximum because function 8, (t, 2) = ES1 (t, x) + 
&,’ (t, y) is continuously dependent on (S, t, Z). 

Let us define the sufficient conditions for the equality E* (to, 3,) = E; (to, 2,) to 
be satisfied. We introduce for any c the closed sets 

IV, (t) =LI (2 E-Rk : E (t, z) < c} 
W,* (t) == {z E Rk : E* (t, z) < c} 
W,” (t) = {z E Rk : E, (t, z) < c} 

and use symbol d for denoting the,boundary of the set in Rk. 

Condition 1. 1. Let E* (to, z,-,) = cs. Then 

If condition 1.1 is satisfied, there exists a collection of closed convex sets B (t) C 
Rkwhich depend on t E [to, @] and such that: 

1) z, E B (to); 
2) set B (ts) contains for any to < t, < t, < 8 all phase positions that can be 

reached at instant t, from position (tl, zl), where z1 E B (tl) , and 

3) Wco* (t) f-j B (t> # ~23, ‘trt E @o, 01. 

Let there exist an open convex set B C Iz”, which contains set B (t) with pro- 
perties defined above, and such that the following conditions are satisfied. 

Condition 1. 2. Function a, (t, Z) must be convex over set B relative to 
z for any s E S and t E It,, 01. Note that this condition implies the convexity of 

sets IV,* (t) n B. 

Condition 1. 3. If the number p > 0 is such that for every c E (co, co + 
@) there exists a set J, which is dense in [to, 61 and has the following properties, The 
part of the boundary of set w,* (t) in B is smooth for any t E J, , i. e. it is pos- 

sible to draw from every point in dJVc* (t) f] B a unique supporting hyperplane to 

WC* (t) C1 B - 

Theorem 1. If condition 1.1 - 1.3 are satisfied, E* (to, 2,) = E (to, zs). 
Proof, We denote by T [tl, t,f (34) the set of program absorption Cl]. i. e. 

the set of all points zr E Rk, such that the first player is able to bring the system from 
position (tr, zr) to position (ts, Zs) for any arbitrary tr < t, from [t,, f3] and the 

set McR”, if he Wows the programed control of the second player in the interval 
ftl, &I. At the position (ts, 2s) , z, E M. 

Evidently E* (to7 zo) < p. (t,,, zo) , hence for proving the theorem it is sufficient 
to show that the inclusion 

zo e WC (to) (1.5) 

is valid for any c E (es, CO $- fi) . Let us prove (1.5) for some fixed c , rioting that 
prop&y 3) of set B (t) implies that WC* (t) fl B (t) # @ for all t 6G Ito, 01. 
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Suppose that the following statement has been already proved. Inclusion 

is valid for any ri and Zs such that rs E J, and to < rr < z, . The validity of 
(1.5) follows from this statement. 

Let us consider the subdivision of segment It,, 01 by points t, < tr < . . . < tx 
< 8 such that ti E J, when i &’ i < N. Then from (1.6) we have 

T [to, trl - - - T [q,r_el, tNl (We* (tx-) i-l B (tpJ1 3 J+‘,* (bJ fl B (bl (1.7) 

By reducing the size of subdivisions of segment [to, tN1 by points from/,and using 
the differential game lattice [1,2], from (1.7) we obtain 

s I&l. +Jl (WC* @iv) n B @iv)) 3 ‘w,* (Gf If B (to) (1.8) 

where S [a, bl {M) denotes the set of points z E Rk such that position (a, 4 is the 
point of local absorption of set M c Rk at instant t = b [I] . 

Since function E* (t, z) is continuous with respect to (t, z), the set WC* (t) is upper 
semicontinuous with respect to t. Since owing to property 2) set B(t) is upper semi- 

continuous on the left, hence set WC* (t) n B ft) is also upper semicontinu~s on the 
left. From this and the theorem on alternative [l] we can deduct that set 8 I&, 4 
(WC* (t) n B (t)) is also upper semicontinuous on the left with respect to t , Hence 
from (1.8) taking into account that WC* (0) = WC (0) and * WC (to) = .S Ito, 01 (W, (0)) 
we obtain 

WC* @of n B (to) c s I&, 61 {WC* (6) Ti B (0)l c (I.91 

s [to, 6J {WC* (6)) = WC (to) 

Since 20 E WC* (to) n B (to), from (1.9) follows (1.5). 
It remains to verify the statement (1.6). For this it is sufficient to prove the equa- 

lity 

T VG =,nsF VCf ( 1.10) 

where T = T [z,, r21 , a, and Z, are fixed and satisfy the assumptions of statement 

(1.6). and E = WC* (z,) n B (Q) and E, = w,8 (%) fl B (zz)). 
Since function E, (t, Z) represents the game value and, also, the program maximin 

for system (1.1), (1.2) and for the payoff R, (4 [ 11, hence 

T (WC8 (td)} = WCS (%I), Vs E s 

and owing to property 2) of set B (t) we have 

T (~1 3 w,s (~4 n B h) (1. 11) 

Using (1.10) and (1.11) we obtain (1.6) in the form 

T (El =ls’ 1&J 3~&W&) n B (G = WC* (TX) fl B @i) 

First, let us consider the case when E is a compactum. We represent E as the 

intersection of supporting half-planes 

E ==JD”,, OI = (z E R” : (1, z> < y&X (1, a>) 
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where D is the unit sphere in fi’. We shall prove that for any 1, E 8D there exists 
an element s* E S such that 

ot, 1 &, (1.12) 

Let Z* E dE be a point such that the hyperplane n (1,) = {Z E Rk E (I,, Z> 

= Cl*7 * z >} represents the support of E. Since z, E dljV,* (Q U dB (_z,), 
three cases are possible. 

1”. z, E a,B (zs) and z* @ kVV,* (zs), when (1.22) is evidently satisfied for 
any s* 6s S. 

2”. z* Ff dB (z2) and z* E 8VVC* (z,). Since E* (z,, s,) = c, there exists 
an element s* E S such that es. (z,, z*) = c. We shall prove that z* E aIVCs* 
(Z,). If Z* E int WCs* (Z,), then, owing to the convexity of function c;#, (zs, 2) 

with respect to z E B t we would have C= min {E$, (zs, z) : z cg B (z,)), However, 
since to < Zs, then c < inf {E$, (t,, z): z E B (to)} and, consequently, c \c inf 

(8’ (to, z) : z E B (to)], h h w ic contradicts the inequality c > co = E* (t(t? lit& 
Hence z* E 6’FVCs* (Q). Since z* QZ 6’B (z,), the hyperplane n (I,) is a suppoc- 
ting one and because of condition 1.3 it is, also, the unique support for WC* (Zs) n 

B that passes through point z, . Since FVC* (z,) c WCs* (z,) , any hyperplane that 
passes through point Z* and is a supporting one for set WC”* (z,) n B, is also sup- 

porting for W,* (zs) fl B _ These two observations imply that the hyperplane E (l,) 

is a supporting one for Tiv~‘~ (zs) f-j B and, consequently, also for E,*.Hence (3.12) 
is also valid in case 2”. 

3”. Z* E aW,* (z,) ,q ,3B (‘tr). We assume that the hyperplane n (a,) is not 
a supporting plane for WC* (z,) n B, as otherwise the previous reasoning could be 

applied. As in case 2”‘ we assume that .Q E S . If Tz (I,) is not a supporting hyper- 

plane for set w$* (%a) n B (zs), points 21 E Wz* ($1 fi B (z,) and 2, E w,“* (Zs) 
n (B \ B (.ts)) would be found lying outside the half-space o,+. The existence of 

such points .zlr zs, and Z* contradicts the convexity of set h’,,. 
Tnus the statement (1.12) is valid in all three cases, and implies that 

n T m 3,I$T FJ ( 1.13) 

I&D 

But by Neumann’s minimax theorem we have for system (1, 11, (1.2) 

T { n Oil. = $I, T vu (1. 14) 
l&D 

From (1.13) and (1.14) we obtain T (Ejp& T (Es}. The inverse inclusionis obvi- 
ous. Hence (1.10) is proved in the case when E is a compactum. 

When set E is unbounded, the proof is reduced to the previous one by the following 

procedure. 
To prove (1.10) it is sufficient to show that 

rD n T(E) =$QrD n T~-QI, v+Q 

We set f = rs. A reasonably large number Fl can then be found such that 
sets E’ and E,’ satisfy the relationship 

rlD n E = r,D n E”, r,D /“j E, = r,D n Es”, VS E S 
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then 

r,D n T {E} = r,D f-) T {E’), r,D f-) T {Es} = 

r,D f--J T {Es”}, Vs E S 

We set E” = E n r,D and E,” = E, n rlD. Since E” is a compactum, hence, 
as previously shown, we have 

T {E”) =s2sT {E,‘J 

This proves (1.10) and completes the proof of the theorem. 

Note. If Eq. (1.2) is linear and the payoff R (z) is the Euclidean distance to the 
convex compactum in Rk , then mapping (1.3) contains linear R,’ (5) and RB2 (Y), 
and function E* (t, z) coincides with the programed maximin. Condition (1.2) is 
satisfied for B = Rk. 

Condition 1.3 is satisfied in the case of a regular problem [l]. It should be noted 
that when the dependence of P (t) on t is continuous, the differentiability of function 
e* (t, z) not only with respect to z, but, also, to t follows from the condition of re- 
gularity. This implies that ei = e , which means that condition (1.1) is also satisfied. 

If, however, the dependence of P (t) on t is measurable but discontinuous , condition 
1.1 may not be satisfied, and has to be postulated. 

Example. Let us consider the modification of the problem in [3]. Let system 
(1. l), (1.2) be presented in the form 

Xl * = x2, x2' = Ul, x3' = x4, x4* = u,; u (0 E p (t) 

Y,’ = Y,, Y,’ = hY22 + Vl, Y3’ = Y4, Y,' = v2; v(t) E Q 

Q = (v = (Vl, v2) : II v II 6 VI, p (Q = (u = (4, up): II u n d p (t)) 

where p (t) is a measurable bounded positive function, and the number h > 0 is a 
small parameter. 

Let 

R (5, Y) = V(Yl - x1)2 + (Y3 - A2 + a1 (Yl - Xl) + % (Ys - 4 

where al and a3 are numbers. The game is considered in the time interval 10, 01. The 
payoff R (x, y) can be represented in the form (1.3), i. e. 

R (xr Y) = yzs” {(sly, + 33~3) - (31x1 + 3353)) 

s = {s = (sl, s3): (31 - ada + (33 - @3)2 6 11 

We assume that a, > 1 and p (t) - Y > a > 0 for all t. It was shown in [3] that 

es (tl 2, Y; V = - k (t) II s II + sl ((yl - xl) + (e - t) (~3 - x2)) + 

33 ((Ys - 53) + (0 - t) (Y4 - x4)) + 'I.3 As1 (0 - t)2 (3~~~ + 

2~~3 (sl 1 ii 3 II - s33 / iI 3 113) (e - t) - ~3 (e - t)3 sl (v2 3, / 11 3 113 + 

s33 / ii.3 113)) + ~3 (e - t)3 f (t, A, 3, yz) 
e 

k(t)=S(e--2)(p(q-v)dT 

t 

Note that function f (t, h, s, yz) is positive homogeneous with respect to s , and 
that its second derivatives with respect to s E S and the second derivative with respect 
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to Y, continuously depend on t, h, s, and y, in the region of their variation. 
Let us take compactum !J in space (t, z, Y) and show that when h, is fairly small 

we have E* (to, ~0, YO; a~) = E (to, 50~ YO; ad for any b, < h* and (to, zo, yo) E I’ . 
Since circle s does not contain 0, it is possible to find a sphere B, c Rk of radius 

r* with its center at zero, such that for any ho < 1 and (to, zo, go) E r there exists set 

B(A”, to, X,,, ““1 (t) with properties 1) - 3) and is contained in B,. The subscript at B (t) 

indicates that the set is chosen for the initial position (to, zo, y,) and parameter h = ho). 

We shall show that there exists a A* < 1 such that function E, (t, X, y; J,) is convex 
relative to (5, Y) and concave relative to s, when t E IO, 01, (5, y) E B,, s E S and 
h < a,. 

Since for every s = (sl, sa) E S sr >S > 0 ( 8 is some number), function112 &yz2 

-k h’f (t, ?+ s, y2) is convex relative to y, in the set 1 y, 1 < r*. for all t E (0, 01 and 

s E S, if b < h, ( A, is fairly small). This implies convexity of function E, (t, x, y; h) 

relative to (5, y) E B, . 

Since k (t) > ll,a (0 - t)“, hence function E, (t, X, IJ; A) is concave relative to 

s E S when h < A2 ( A,2 is fairly small). We set h, = min (h,, I,). 

We take arbitrary ho f h, and (to, ~6, yo) E I? , and shall check if conditions 1.2 

and 1.3 are satisfied. For set B we take the sphere B,. Condition 1.2 is then satisfied. 

We set E* (to, x0, Y,; a,) = co , select fi > 0 so that 0 e (co, co + p) , and assume 
that c E (c,, co + p). We then check if the part of the boundary of set WC* (t), lo- 
cated in B,, is smooth for any t E 1 to, @] . For this it is sufficient to show that for any 

t E [to, 01, (z, y) E B, for which a* (6 5, Y; ho) = c the maximum in the equality 

E* (t, J, y, 1”) = max {Ed (t, Z, y; a,) : s E S] is reached on a unique s. This follows 
from the condition a* (t, .c, y; h,) : c # 0 of positive homogeneity and concavity of 

function .sS (t, Z, y; a,) relative to s E 8. This proves that conditions 1. 1 - 1.3 are sa- 

tisfied for the considered here ho and (to, zo, yo) . Hence Theorem 1 is valid. 

Note that when function p (t) is continuous, the equality E* (to, x0, y,; ho) = E (to,xo, 

y,; a,) may be solved more simply by the method used in [3]. 

2 . Let us consider the differential game ending at instant t = 6. The motion of the 
system is specified by the linear equation 

x’ = u + v, x E R”, u(t)EP(t), gvJt)EQ(4 (2.1) 

where z is the system phase vector and the dependence of compacta P (t) and Q (t) 
inRnon t is measurable and bounded. Let the continuous payoff function r (x) be of 
the form 

r (2) = min max y (2; s, 1) 
BES IEL 

v (5; s, Z) = <a (s, Z), x> + b (s, Z) 

(2.2) 

where 8 and L are convex compacta, function y (x; s, 1) is convex relative to, s E 

s, concave relative to Z E L , and affine relative to x ; a (s, I) is a continuous 
function with values in Rh, and the scalar function b (s, 1) is lower semicontinuous with 
respect to s and upper semicontinuous with respect to Z. 

Representation (2.2) is admissible in the following cases: 

a) F (2) = min (A1 (5) ,. . ., & (x), cp (z)) where Ai (I) are linear functions andq (x) 
is a convex function such that dom cp * is a compactum (see [4]), and 
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b) r (z) = ‘pl (5) - ‘pp (5) , where the convex functions vi (z) are such that the 
sets dom ‘pi* are compacta. 

We introduce the notation 

x(t, s; s, 1) == (a (s, I), z> + j Ug;r& (a ($9 4, u> & + 

9 

f rnax (a (s, E), 7-Q dz + b (s, E) 
t ==Q (2) 

and denote the value finction by E (t, z) . 
We assume that the following condition is satisfied. 
Condition 2. 1, Function x (t, z; s, I) must be convex relative to S and 

concave relative to I in the set S X L for any position (t, z) . 

T h e or em 2, If condition 2.1 is satisfied, then for all positions 

e,, (t, X) = E (t, z) = coo (t, z) 

Proof. First, we would point out that according to one extension of Neumann’s 
theorem on minimax [5] equality (2.2) may be represented in the form 

I? (5) = 9”,” III: Y (z; s, 1) (2.3) 

Let us prove the validity of inequality 

coo (6 4 < 8 (6 4 (2.4) 

For every I E L we introduce the continuous function of X 

j+(X) = :J; Y (G s, 4 

Let E (t, x ( ~1 (*)) be the value function of the game which corresponds to system 

(2.1) and to payoff function yz (5 (6)). We shall prove that 

E(4~~Yz(*)) -= II&i: x (t, 2; s, 1) (2.5) 

We apply the method used in [2], and denote by 8%’ (tl, x* 1 ia, rp (-)) the program 

minimax in the game defined by system (2.11 with payoff cp(z (&J) for position (tl, Z+) 
and any arbitrary instant of time t1 ( t, < 0 and function cp (x) . The minimax is 
determined by formula 

where c7 is the set of programed controls of the first player in [tl, tsl, i. e. of mea- 

surable functions u (0) which satisfy almost everywhere in [t,, ts] the constraint u (t) 

E P (t). The definition of set v is similar. We denote by z [t,; tl, x*, u, V] the 

system phase point at instant te with initial position (tl, z*) and the selected controls 

u (.) and u (-f. 
It can be verified that 
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E0 (t, x 18, Jy‘ ( a)) = Ells” x (t, x; s, 1) 

Let us show that for any t, ( t, ( 0 and x.+ E fi’” 

~0 (t;, x* I 4, ~0 (h, a 10, yl (+) = E* k, X* I e, Y{ (4) 

(2.6) 

(2.7) 

In fact, using (2.6) with allowance for the convexity of function x (t, x; s, I> 

relative to s , we obtain 

Equality (2.7) is proved, It implies that in virtue of the differential games lattice 

k2] E (t, z 1 -h (9) = 8 (t, 3: I 8, 39 (9) and, consequently, (2.5) follows from 

(‘2.6). 
From(2.3)forany ~CZZL weobtain ~~(.)\(r(.),hence~(t,~ty~(.))~ 

E (t, z 1 I’ (- )). From this and equality (2.5) we obtain (2.4). Using the program 
maximin and equality (2.2) with allowance for the convexity of function 3c (t, s; s, I) 
relative to I, we similarly obtain 

8 (t, x) < Eoo (t, x) CL81 

By the already mentioned theorem about the minimax we have E,,~ (t, X) = eoO 

(t, s), hence (2.4) and (2.8) confirm the theorem. 

E x a m p 1 e . Let system (2. I.) be defined by 

Xl *= u,+%, w (t) E P (t) = [a = (ELI, us) : 11 u 11 < 2 (1 - ql: 

3 *=u2 +vz> IJ (Q fz Q = f@ = (03, v2) : Ij u I/ < 11 

The game is played in the time interval IO, I]. The payoff is defined by I’ (x) = 

min {cc, x>, cp (z)), where c is a nonzero vector in RZ, and the convex function g, (5) 

is determined by its conjugate [4] 

VP* (4 = 
II 1 II2 7 IEL 
+oo, IF&L 

where L is a circle of unit radius in R2 whose center is at point d , We assume that 

L does not intersect the half-line directed totiard vector - c. 
Let us represent function I’ (x) in the form (2.2) 

E(z) = r$lp=y (<SrCfS& 2) - szliZ112) 

s = (s = (Sr, sz): s,+s, =I; 81, Sa >, 0) 

i.e. in this example we have a (s, I) = slc + s,Z a b (s, I) = - s2 11 2 112. 

For any t E [0,1] and r ez R2 
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where k (Q is a nonnegative function. Hence 

x (C s; s, 4 = (slc + se;& z> + k (0 II SIC + sd Ii - sa ! Z II” 

Function x (t, z; s, I) is convex relative to s E S for any 2 E L. If the norm of 
vector d is fairly large, x (t, r; S, 2) is concave relative to I = L . Hence condition 
2.1 is satisfied. 

The author thanks N.N. Krasovskii and V. S. Patsko for discussing this work and 

for their valuable advice. 
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